

USER INSTRUCTIONS

D20-series Compact Digital Positioner

FCD PNENIM0020-06-A5 - 07/24

Installation
Operation
Maintenance

Contents

١.	Introduction	პ
2.	Warning	4
	Special Conditions for Safe Use	4
	Maintenance/service	5
3.	Storage	6
	g	
4.	Description	7
5	Type sign example	Ω
J.	Type digit example	0
6.	D20 Model code	9
7.	Installation	10
7.	Installation	יו. 10
		10
	Air Preparation Mounting	11
	Adaptor drawing	10
	Suit chaft ctyle "00"	12
	For Linear actuator	13
	Mounting the positioner	13
	Mounting of the PMV D20 positioner on a linear	 r
	pneumatic actuator	14
	Mounting the stem clamp bracket and take-off	
	arm	14
	Follower pin adjustment	15
	Rotary actuators	15
	Flowact direct mounting	16
	Mounting the PMV D20 positioner on a quarter-	-
	turn actuator (closed or open by spring)	17
	Rotary actutaors VDI/VDE 3485 (Namur)	17
	Electrical connections	20

З.		.23
	D20 Single Button	23
	Calibration	23
	Set of Direct or Reverse action	24
	Show gain setting Change of gain setting Eactory reset initial calibration of the 4-20mA	24
	Change of gain setting	25
	1 actory reset, irritial campration of the 4-2011A	
	input and output signals and D20 calibration	26
	To calibrate 4-20 mA input signal	26
	To calibrate 4-20 mA output signal	26
	D22 Menus and 5 Pushbuttons	27
	Menu indicator	28
	Full Menu	38
9.	Maintenance/service	45
10	.Trouble shooting	.50
11.	Technical data	.51
12	.Dimensional Drawing	.53
13	.Spare parts	54
14	.Applied Standards	56
15	.Control Drawing	.57

1. Introduction

The D20-series is a digital positioner designed primarily for controlling modulating valves. The positioner can be used with single acting actuators with either rotary or linear movement.

The D20-series can be equipped with modules for limit switches and pressure gauges. The modules can be factory assembled before delivery or fitted later.

The modules for limit switches can contain one of the following:

- · Two mechanical contacts
- · Two proximity switches
- Two inductive sensors

See page 20 and 47 for more options available

Note!

Only authorized technicians are allowed to work with certified products.

D20 Digital Positioner

Warning

Special Conditions for Safe Use

The enclosure of PMV D20-series Intrinsically safe version is made of aluminium and any impact or friction caused by external objects shall be avoided in the application. Control Drawing D4-086C contains the parameters for intrinsic safety. The intrinsic safe circuits D20-series is insulated from earth and complies with the dielectric strength test of 500 V ac.

Special Conditions for Safe Use (ATEX/IEC specific)

The surface area of the plastic parts on the cover exceeds the limits specified in EN 60079-0 for II 1G (EPL Ga) for gas group IIC and intensive rubbing or brush charging should be avoided when used in an IIC explosive atmosphere.

In a hazardous environment where there is a risk of explosion, electrical connections must comply with the relevant regulations.

Do not disconnect equipment unless area is known to be non-hazardous, or; read, understand and adhere to the manufacturer's live maintenance procedures. To prevent ignition of flammable or combustible atmospheres, disconnect power before servicing,

Substitutions of components may impair suitability for hazardous (classified) locations.

Special Conditions for Safe Use (FM specific)

For Intrinsically Safe applications: Use linear barrier only.

Potential risk of sparking from aluminum alloy enclosure. In Division 1 or Zone 0 installations, equipment shall be installed in such manner as to prevent the possibility of sparks resulting from friction or impact against the enclosure.

Potential risk of electrostatic sparking. Clean only with a damp cloth.

Environmental requirements

Some switch options may decrease the temperature working range se Control Drawing D4-086C for details.

Maintenance/service

Warning!

When upgrading electronically parts inside a PMV positioner approved for installation in Hazardous locations special procedures apply, permission from PMV/Flowserve is required prior to the start of work. Please contact a Flowserve office for information regarding proper procedures.

www.pmv.nu or infopmv@flowserve.com

Warning!

Always turn off the air and electrical supplies before starting any work.

Always turn off the air and electrical supplies (input signals) when shutting down the PMV positioner for any purpose.

General safety

Safety instruction

Read the safety instructions in this manual carefully before using the product. The installation, operation, and maintenance of the product must be done by staff with the necessary training and experience. If any questions arise during installation, contact the supplier/sales office before continuing work.

Warning

The valve can open or close very quickly when in operation and, if handled incorrectly, may cause damages to fingers. There may also be unintentional effects due to it fully opening or shutting off the flow in the process pipe. Please note the following:

- · If the input signal fails or is switched off, the valve operates quickly to its default position.
- If the compressed air supply fails or is turned off, rapid movements can occur.
- The valve is not controlled by the input signals when in the Out of Service mode. It will open/ close in the event of an internal or external leak.
- . If a high value is set for Cut off, fast movements can occur.
- When the valve is controlled in the Manual mode, the valve can operate quickly.
- Incorrect settings can cause self-oscillation, which can lead to damage.

Important

- Always turn off the compressed air supply before removing or disconnecting the air supply connection or the integral filter.
 Remove or disconnect with care as air connection "C-" is still under pressure even after the air supply is turned off.
- Always work in an ESD (Electrostatic Discharge) protected area when servicing the Printed circuit boards (PCB's). Make sure the
 input signal is switched off.
- The air supply must be free from moisture, water, oil and particles according to DIN/ISO 8573-1-2001 3.2.3
- · Failure to comply with instructions specified in this IOM leads to warranty void.

3. Storage

General

The D20-series positioner is a precision instrument. Therefore, it is essential that it is handled and stored in the correct way. Always follow the instructions in this IOM!

Note: As soon as the positioner is connected and started, internal air venting will provide protection against corrosion and prevent the ingress of moisture. For this reason, the air supply pressure should always be kept on unless repair/maintenance work of the positioner, actuator or valve equipment is in progress.

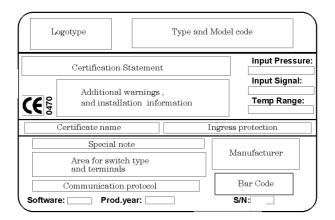
Storage indoors

Store the positioner in its original packaging. The storage environment must be clean, dry, and cool (Temp -15°C to 25°C, 5°F to 77°F).

Storage outdoors or for a longer period
If the positioner must be stored outdoors, it is
important that all the cover screws are tightened
and that all open ports/connections are properly
sealed and/or plugged.

The red shipping plugs are not intended as a permanent outdoor plug. The unit should be packed with a desiccant (silica gel) in a plastic bag or similar, covered with plastic, and not exposed to sunlight, rain, or snow.

4. Description


PMV D20-series is a compact digital positioner that suits both linear and rotary actuators. It's modular and flexible design allows mounting according to the both standard VDI/VDE 3845 for rotary and IEC 534-6 & Flowtop for linear actuators with integrated tubing.

Further on, PMV D20/D22 offers feedback capability with optional plug in switches, HART communication and auto calibration for simple and trouble free commissioning.

5. Type sign example

Ratings and Marking

D20 ATEX/IEC certification temperature range and marking: II 1 G Ex ia IIC T4 Ta -20°C to 85°C Ga

D20 US/CA FM certification FM18US0180X and FM18CA0082X marking: IS CI. I Div.1 Gr. A-D T4

Cl. I Zone O AEx/Ex ia IIC T4 Ga

Cl. I Div.2 Gr. A-D T4

CI. I Zone 2 IIC T4 (US Only)

Listing Company:

PMV Automation AB Korta Gatan 9 SE-171 54 SOLNA SWEDEN

6. D20 Model code

A =	Model	10			
	D20	Single button interface, LED status		\square	
	D21	Single button interface, LED status and LCD		\longrightarrow	
	D22	Full LCD menu, 5 button UI, LED status			
B =	Approv	al, Certificate			
	D	General purpose version		\square	
	Α	Intrinsically Safe Ex ia ATEX			
	В	Intrinsically Safe Ex ia INMETRO			
	N	Intrinsically Safe Ex ia CCC			
	M	Intrinsically Safe Ex ia CCOE		\square	
	F	Intrinsically Safe Ex ia FM			
C =	Functio				
	S	SA D20 E/P (poppet valve)			
D =	Connec	tions Air, Electrical			
	M	1/4" NPT air, M20x1,5 electrical			
	N	1/4" NPT air, 1/2"NPT electrical			
E=		tion feature			
	2	2 Electrical conduits			
	T	2 Electrical conduits, threaded Aux. ventilation			
F=		g material/ Surface treatment			
	U	Aluminium/Powder coating			
G =		ng options / Shaft			
u =					
	09	Double D type, adaptor spindle		\vdash	
	12	Flowtop, direct mounting, D4-As909m(D20) included		\vdash	
	23	VDI/VDE 3845 rotary, Mounting kit not included		-	
	30	Adaptor shaft, select between 01/06/26/30/36/02/43		\vdash	
	39	IEC 534-6, Flat D type, nut incl. Mounting kit not included			
H =		ind Indicator			
	PVA	PMV,Black cover, Arrow indicator		\vdash	
	PVB	PMV, Black cover, No indicator		\vdash	
	FWA	Flowserve, White, Arrow indicator			
	F W B	Flowserve, White, No indicator			
l =	Tempe	rature/seals			
	Z	-20°C to 85°C (-4°F to 185°F)			
J=	Input s	ignal/Protocoll			
	4	4-20 mA / none			
	5	4-20 mA, / HART			
	P		lot when K=T)		
	F		lot when K=T)		
K =	Feedba	ck option, switches	,		
	X	No feedback option			
	T T	4-20 mA transmitter only (J = 4,5)			
	S	Limit switches Mechanical SPDT			
	N	Namur V3 type sensor, P+F NJ2-V3-N			
	P				
		Limit switches Proximity SPDT		\vdash	
	5	Slot type Namur sensor, P+F SJ2-SN		$\overline{}$	
	6	Slot type Namur sensor, P+F SJ2-N			
L =		s, Add in electronics			
	0	No pressure sensors			
M =	Access				
	X	No accessories		\vdash	
	N	Gauge block 1/4" NPT (2 gauges included)			
N=	•	Options			
	N	No special options			
Δ.	Λ .			V I	м.
Α	AA	\	· [I J	$K \mid L \mid$	M I
		5			

For latest version of valid model code please see www.pmv.nu

7. Installation

Removal of cover

General purpose / Intrinsically safe
Remove cover by first loosening the screw 1 and
then the two screws 2.

To install cover, first tighten the screw 1, then the two screws 2.

Tighten to 1.5 Nm \pm 15%.

Air Preparation

Supply air should meet requirements specified on page 5. A coalescing filter/regulator should be installed in front of the supply air connection. Connect the air supply to the filter, which is connected to the D20 positioner.

Tubing

It is recommended to use tubes with a minimum inner diameter of Ø 6 mm (1/4").

Air supply requirements

Poor quality air supply is the main cause of problems in pneumatic systems.

The air supply must be free from moisture, water, oil and particles and delivered @ 1.4-6 barg (20-85 psi)

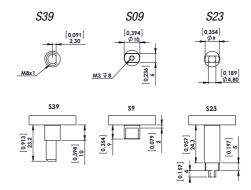
Standard: *DIN/ISO 8573-1-2001 3.2.3* Filtered to 5 Micron, dew point -40°C/F Oil 1mg/m³ (0,83 ppm by weight)

The air must come from a refrigeration dried supply or be treated in such a way that its dew point is at least 10°C (18°F) below the lowest expected ambient temperature.

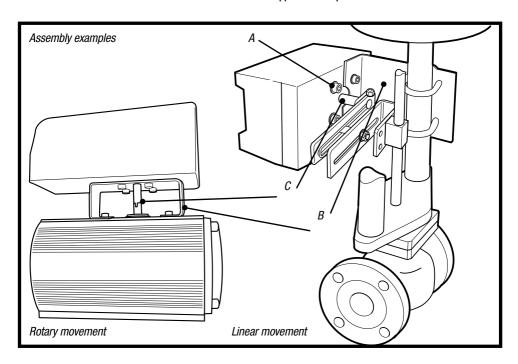
Before the air supply is connected to the positioner, we recommend the pipe/tube is opened freely for 2 to 3 minutes to allow any contamination to be blown out. Direct the air jet into a large paper bag to trap any water, oil, or other foreign materials. If this indicates that the air system is contaminated, it should be properly cleaned before continuing.

WARNING! Do not direct the open air jet towards people or objects because it may cause personal injury or damage.

Mounting

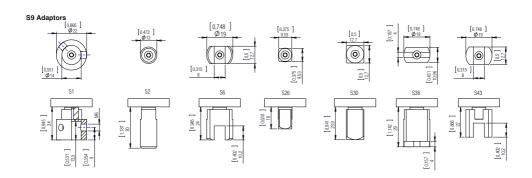

Note: If the positioner is installed in a hazardous environment, it must be of a type approved for this purpose.

All versions of the D20 positioner have an ISO F05 footprint. The holes are used to attach the D20 to the mounting bracket B. Please contact PMV or your local distributor representative with actuator specifics for the proper mounting bracket and hardware.


The spindle shaft S09 can be used to suit various actuators in question by the use of adaptors.

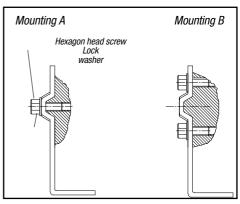
It is important that the positioner's spindle shaft and the lever arms, that transfer the actuator movements, are correctly mounted. Any tension between these parts can cause incorrect operation and abnormal wear.

Spindle shafts

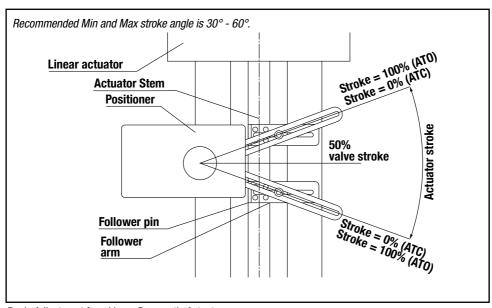


Note: There are many spindle options available depending on the actuator. Please contact your local PMV supplier for all options available.

Adapter drawing Suit shaft style "09"



For Linear actuator Mounting the positioner


- 1. Adjust the actuator to mid-stroke.
- 2. Pre-assemble the mounting bracket on the left actuator leg hand-tight with two U-bolts, nuts and lockwashers.
- 3. Attach the positioner to the pre-assembled mounting bracket and fasten it with two hexagon head screws and two lock washers. Check that the follower pin is inserted in the slot of the take-off arm and the follower arm is positioned at a right angle to the outer edge of the positioner.

NOTE: A slight unsymmetrical mounting increases the linearity deviation but does not affect the performance of the device. Depending on the actuator size and stroke it may be necessary to flip the take-off arm by 180° and attach it to the opposite side of the stem clamp bracket.

Yoke Actuator Mounting (according to IEC 534 part 6)

Basic Adjustment for a Linear Pneumatic Actuator

Mounting of the PMV D20 positioner on a linear pneumatic actuator (NAMUR / IEC 534 part 6)

The mounting of a rod actuator kit (according to IEC 534 part 6) is described in an example by using the following equipment:

Valve: Standard globe valve or equivalent

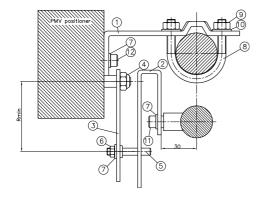
Actuator: Single-acting pneumatic actuator

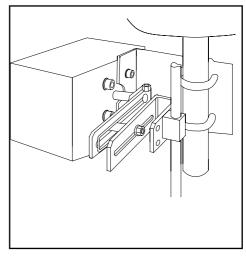
Positioner: PMV D20 with mounting kit.

Pre-assembly: Valve with actuator (valve stroke is matched with the actuator stroke).

For mounting, proceed as follows:

Mounting the Follower Arm (Figures 1 and 2)


- 1. Unscrew the lock nut for the follower arm attachment.
- Place the follower arm on the shaft at the back of the positioner and fasten it with the lock nut. The follower pin should point back from the positioner.



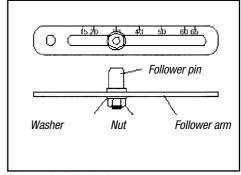
CAUTION: Maximum torque 0,25 Nm (0,18 ft-lbs).

Mounting the stem clamp bracket and take-off arm

- Attach the stem clamp bracket to the stem clamp and fasten it with two hexagon socket screws and lock washers.
- 2. Attach the take off arm to the stem clamp bracket and fasten it with a hexagon socket capscrew and a washer. Ensure the take-off arm slot is centered.

Mounting on a Rod Actuator (IEC 534 part 6)

Follower pin adjustment

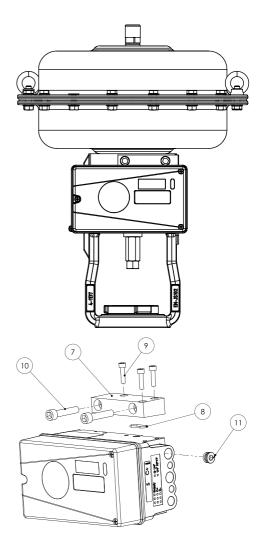

The positioner follower pin must be adjusted to match the valve stroke in the following manner:

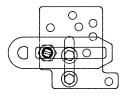
- 1. Adjust the follower pin (STROKE + 10 mm) as indicated on the follower arm's embossed scale.
- 2. Exhaust the actuator.
- 3. Loosen the follower pin and shift it along the follower arm until the control marking on the feedback gear is horizontal (points to the center of the feedback potentiometer). Fasten the follower pin in this position.
- 4. Adjust the actuator to full stroke and check the follower pin adjustment the same way as described in step 3. As the actuator strokes, the rotation of the feedback gear should be between the inner control markings. If the length of rotation is outside the control markings, adjust the follower pin farther out on the feedback lever to reduce the angle of rotation.

NOTE: Stroke the actuator carefully and ensure the follower arm does not interfere with valve parts, actuator or positioner. Do not adjust the follower pin too near to the slot end of the take-off arm.

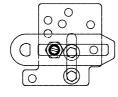
The minimum lateral distance should be approximately 5 mm (0,2 inches) to prevent bending of the feed-back mechanisim.

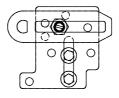
Rotary actuators

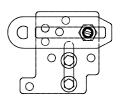

Follower Arm (standard)


Flowact direct mounting

The positioner follower pin must be adjusted to match the valve stroke in the following manner:


1. Adjust the follower pin (STROKE + 10 mm) as indicated on the follower arm's embossed scale.


Pin plate and pin configuration for different actuators and stroke


10 mm stroke 252

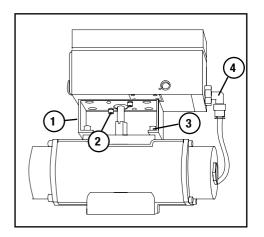
20 mm stroke 252

20 mm stroke 502

40 mm stroke 502

Mounting the PMV D20 positioner on a quarter-turn actuator (closed or open by spring)

The mounting of a pneumatic double-piston partturn valve actuator (in accordance with VDI/VDE 3845) is described as an example by using the following equipment:


Quarter-turn valve actuator: Rack & pinion or scotch yoke, closed or open by spring.

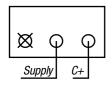
Rotary actutaors VDI/VDE 3485 (Namur)

Mount bracket 1 to positioner. Secure with 4 x M6 screws 2. 2.5 nm (1.8 ft lbs)

Fit positioner on actuator and secure with 4 x screws 3.

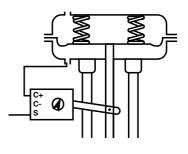
Install tubing 4 between actuator and positioner.

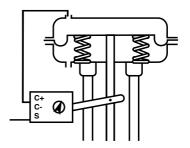
Gauge block


Gauge blocks are available for D20 series with $\frac{1}{4}$ " NPT air connections. To install, ensure seals are aligned, then use 3 Nm (2.2 lb ft) of torque when fastening the gauge block to the positioner using the two screws supplied with the kit.

Gauge blocks are available for D20 series with 1/8" NPT

Air Connection


Single acting positioner, Direct function Actuator with closing spring


When the control signal increases, the pressure C+ to the actuator is *increased*. The valve stem moves upward and rotates the positioner spindle *counter-clockwise*. When the control signal drops to zero, C+ is vented and the valve closes.

Actuator with opening spring

When the control signal increases the pressure C+ to the actuator is *increased*. The valve stem moves downward and the positioner spindle rotates *clockwise*. When the control signal drops to zero, C+ is vented and the valve opens.

Electrical connections

Terminal block diagram for the D20-series. The terminal block (right) for the positioner is accessible when the aluminium cover is removed. The D20-series digital positioner has been designed to operate correctly in electromagnetic (EM) fields found in typical industrial environments. Care should be taken to prevent the positioner from being used in environments with excessively high EM field strengths (greater than 10 V/m). Portable EM

devices such as hand-held two-way radios should not be used within 30 cm of the device. Ensure proper wiring and shielding techniques of the control lines, and route control lines away from electro-magnetic sources that may cause unwanted noise. An electromagnetic line filter can be used to further eliminate noise. In the event of a operability. It may be necessary to recalibrate the D20-series positioner to restore operation.

Use a coin to remove the black plug

\bigcap	\bigcap	\bigcap	\bigcap
(<u>C</u>)	(2)	\odot	4
	omA n		0mA ut

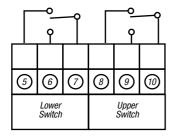
HART and non HART unit

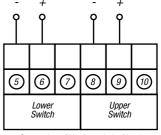
- Input signal + 4-20mA DC
- Input signal 4-20mA DC
- 4-20mA + Feedback 13-28 VDC
- 4-20mA Feedback 13-28 VDC 4. Profibus/Fieldbus -

Profibus and Fieldbus unit

- 1. Profibus/Fieldbus +
- 2. Profibus/Fieldbus -
- Profibus/Fieldbus +

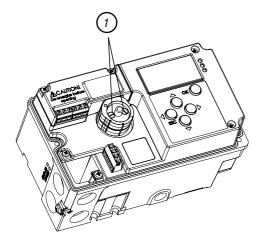
D20(D20) optional Switch or remote board


5	6	7	8	9	(9)
	Lower Switch			Upper Switch	


Warning! In a hazardous environment where there is a risk of explosion, electrical connections must comply with the relevant regulations.

	Switch option	Optional board					
		5	6	7	8	9	10
X	No feedback option	na.	na.	na.	na.	na.	na.
Т	4-20 mA transmitter, no switches	na.	na.	na.	na.	na.	na.
5	Slot type Namur sensor, P+F SJ2-SN	-	+	na.	-	+	na.
6	Slot type Namur Sensor, P+F SJ2-N	-	+	na.	-	+	na.
N	Namur V3 type sensor, P+F NJ2-V3-N	-	+	na.	-	+	na.
Р	Limit switches Proximity SPDT	NO	NC	Com	NO	NC	Com
S	Limit switches Mechanical SPDT	NC	NO	Com	NC	NO	Com
	Mounting options						
RM	Remote Board (Fedback and switch option =x or T)	na.	na.	na.	ccw	RA	CW

Connection of mechanical and proximity switches. (S,P)



Connection of Namur switch. (N,5,6)

Limit switch calibration

- Losen screws (1) and adjust cams.
- Adjust lower cam first and then upper cam
- Tighten screws (1)

8. Control

D20 Single Button

Calibration

- A. Apply 4 mA current as input signal.
- B. Wait for the Yellow LED to flash and then press the button for 5 sec. (Release the button when the three LEDs start to flash alternately).
- C. The calibration process starts and will take between 30 seconds to some minutes depending on the actuator size. The actuator goes to maximum, minimum positions and calculates the control parameters. The three LEDs will flash alternately during the calibration process.
- D. When calibration is completed, the 3 LEDs will rapidly flash alternately for a moment.

A successful calibration is indicated by yellow or green LED:

- Green LED flashes = In service
- Yellow LED flashes = In service. The unit vents in max or min position.

An unsuccessfull calibration is indicated by error codes:

P D20 does not reach the setpoint.

Set of Direct or Reverse action

Note! For safety reason, this operation has to be done max 5 minutes after calibration. If time has run out, or if power is disconnected during the five minutes, perform a new cali-bration, before changing the direction.

Run 4 mA. If valve is in right position, then check the position over the whole range (8, 12, 16 and 20 mA).

If the direction need to be changed: press the button 3 times and the direction will change.

Check operation at 4 - 8 - 12 - 16 and 20 mA

Show gain setting

If the actuator position is unstable or selfoscillating after calibration, the gain can be adjusted.

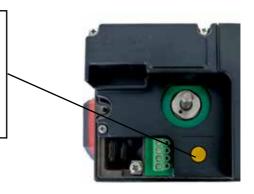
Gain can be set from $\bf A$ (lowest) to $\bf G$ (highest). Default is $\bf D$.

To **show** the current gain setting, press the button four times.

To indicate the current setting, the LEDs flashes according to the following:

LEDs show:	YRR	G (Highest)
LEDs show:	YRY	F
LEDs show:	YRG	E
LEDs show:	Y G	D Default
LEDs show:	Y G G	С
LEDs show:	YGY	В
LEDs show:	Y G R	A (Lowest)

The gain code sequence is repeated 5 times.


Button functions:

Press 5 sec = Calibration

Press x3 = Direct/reverse action

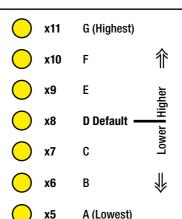
Press x4 = Show gain setting

Press x5 - x11 = Change gain setting

To indicate that a command is accepted, the three LED:s light up.

Change of gain setting

To lower the gain, press the button: 7, 6 or 5 times (5=lowest).


To increase the gain (if actuator is moving to slow).

Press the button: 9, 10 or 11 times (11= highest) to increase the gain.

The LED:s flashes alternately when the button is pressed. After gain change the LED:s show the gain code five times.

The default value after first calibration is D.

After this, the gain settings are finished.

Factory reset, initial calibration of the 4-20mA input and output signals and D20 calibration


- A. Press and hold button while switching on power (4-20 mA input) to the D20, keep the button pressed for 6 sec. The EEPROM will now be erased. Release the button when all three LEDs light up for a moment.
- B. Wait for the LEDs to start flashing yellow red alternately. D20 is now in FACTORY MODE.

To calibrate 4-20 mA input signal

- C. Apply 4.0 mA input signal and then press the button three (3) times until the 3 LEDs will rapidly flash alternately for a moment and then LEDs will flash yellow red again.
- D. Apply 20.0 mA input signal and then press the button three (3) times until the 3 LEDs will rapidly flash alternately for a moment and then the LEDs will flash yellow green.

To calibrate 4-20 mA output signal

- E. The feedback transmitter output signal on pins 3 and 4 will now follow the input signal instead of the position. Apply 20.0 mA input signal, measure the output signal and adjust the input signal up/ down until the output signal is 20.0 mA. Then press the button three (3) times until the 3 LEDs will rapidly flash alternately for a moment and LEDs will flash yellow green again.
- F. The output signal on pins 3 and 4 will continue to follow the input signal instead of the position. Apply 4.0 mA input signal, measure the output signal and adjust the input signal up/ down until the output signal is 4.0 mA. Then press the button three (3) times until the 3 LEDs will rapidly flash alternately for a moment and yellow LED will flash.

G. The D20 is now ready for calibration.

Refer to page 23 for the D20 calibration process.

Note: The whole processes specified on this page should be completed for the D20 to function properly.

D22 Menus and 5 Pushbuttons

The positioner is controlled using the five pushbuttons and the display, which are accessible when the aluminum cover is removed.

For normal functioning, the display shows the current value. Press the ESC button for two seconds to display the main menu.

Use the pushbuttons to browse through the main menu and the sub-menus.

The main menu is divided up into a basic menu and a full menu.

Other functions

FSC

Exit the menu without making any changes (as long as any changes have not been confirmed with OK).

FUNC

To select function and change parameters.

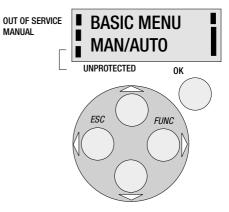
0K

To confirm selection or change of parameters.

MENU INDICATOR

Displays the position of the current menu row in the menu.

IN SFRVICE


The positioner is following the input signal. This is the normal status when the positioner is working.

OUT OF SERVICE

The positioner is not following the input signal. Critical parameters can be changed.

MANIIAI

The positioner can be stroked manually using the pushbuttons. See section "Man/Auto", page 37.

UNPROTECTED

Most of the parameters can be changed when the positioner is in the "Unprotected" position. However, critical parameters are locked when the positioner is in the "In service" position.

LED color (R=Red, Y=Yellow, G=Green)

Co	Codes during In Service							
		R	Actual valve position deviates from requested/set position					
		Υ	Fully opened/closed valve using Cut Off (= 0K)					
		G	Controlling valve position (= 0K)					

Со	Codes during Out of service							
	R Y Input signal not calibrated							
	Υ	G	Feedback signal not calibrated					
	Y	Y	Out of Service (= OK)					

Са	Calibration alarm								
R G No feedback movement. Check linkage from action to positioner									
	R	Υ	No air available. *(alarm available only when pressure sensors installed)						
R	G	G	No pot connection. Check pot cable inside positioner.						
R	Υ	Υ	No air relay. Check cable inside positioner.						
R	Υ	G	Pot not calibrated. Go to Calibrate->Expert->Pot on LCD menu.						

Menu indicator

There are indicators at both sides of the display window and they indicate as follows:

Flashing in position Out of service

Flashing in position Manual

Displayed in position Unprotected

The indicators on the right-hand side show the position in the current menu.

Menus

To display the menus you can select:

- Basic menu, which means you can browse through four different menu items
- Full menu, which comprises ten steps. Use the Shift Menu to browse through the menu items

Full Menu can be locked out using a passcode.

The main menus are shown on the next page and the sub-menus on the subsequent pages.

Changing parameter values

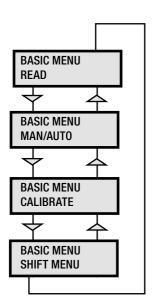
Change by pressing $\langle \rangle$ until the desired figure is flashing.

Press to step to the desired figure. Confirm by pressing OK.

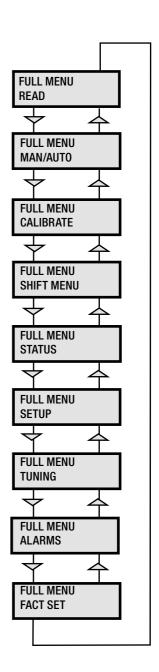
A change can be undone by pressing the ESC button, which returns you to the previous menu.

■ FULL MENU MAN/AUTO

FULL MENU CALIBRATE


FULL MENU

SHIFT MENU



Basic Menu

Menu system

The menus are described on the following pages.

BASIC MENU CALIBRATE

First start

"Calibrate" is displayed in the basic menu automatically, the first time power is applied. It can be selected from the basic or full menu at any time.

Tip! Instant quick calibration

The D22 can be instantly calibrated by pressing the top + bottom buttons for 5 seconds (see picture). This function is available from any menu position.

A complete auto-calibration will take a few minutes depending on size of actuator and includes end limit calibration (zero and span), auto-tuning (dynamically sets the control parameters for the actuated package the positioner is controlling) and a check of the movement speed. Start the automatic calibration by selecting *Auto-Cal* and then answer the questions in the display by pressing *OK* or the respective arrow.

Calibration error messages

If a fault occurs during calibration, one of the following error messages can be displayed:

No movement/press ESC to abort

Typically the result of an air delivery issue to the actuator, a stuck valve or actuator, or incorrect mounting and/or linkage arrangement. Check for proper supply air to the positioner, pinched tubing, proper actuator sizing, proper linkage and mounting arrangement.

Pot uncalibrated/press ESC to abort

The potentiometer is out of range. The potentiomenter is aligned using the Calibrate - Expert cal - pot Menu. The calibration sequence must be restarted after the fault is corrected.

Instant quick calibration

First start, Profibus PA

For Profibus PA, connect the input signal at pos 1 and 2 on the terminal block. See Electrical connections in the manual.

In the SETUP/Devicedata/Profibus: change the address from 126 to any number between 1-125. Never use the same number with more than one unit. Install values in failsafe mode, for communication when loss of signal. Calibrate the unit.

GSD files are available at our web-page

To install the D20_PROFIBUS.DDL file to Siemens SIMATIC PDM.

- 1. Move the files to the directory where the DeviceInstall.exe is located.
- 2. Run DeviceInstall.exe

www.pmv.nu

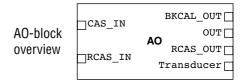
Pa SP		netei	r		<i>esc</i> etpo	<i>riptic</i> oint	on	The SP has 5 bytes, 4 bytes and one status byte. The st 128 (0x80Hex) or higher for	atus byte needs to be	<i>BYTE</i> 4+1=5	
RE	ADE	BACK	(P	ositi	on		The READBACK has 5 bytes float value and one status b		4+1=5	
POS_D Digital position						ıl pos	sition	Returns actual position as a definitions as below 0 = Not initialized 1 = Closed 2 = Opened 3 = Intermediate	a digital value with	2	
СН	IECK	BAC	K					Detailed information of the Several messages can occ		3	
RCAS_IN Remote Cascade						te Ca	ascade		The RCAS_IN has 5 bytes, 4 bytes for the float value and one status byte.		
RCAS_OUT Remote Cascade					emo	te Ca	ascade		The RCAS_OUT has 5 bytes, 4 bytes for 4+1=5 the float value and one status byte.		
Sta	atus	Byte	: Tab	le							
MS	SB						LSB	Meaning	D20 info		
0	0	0	0	1	0	Х	Х	Not connected			
0	0	0	0	1	1	Х	Х	Device failure	PROFIbus PA module fa	ilure	
0	0	0	1	0	0	X	Х	Sensor failure	No sensor value		
0	0	0	1	1	1	X	Х	Out of service	Al Function Block in 0/S	mode	
1	0	0	0	0	0	X	Х	Good - Non cascade	Measured value OK		
									All Alarm values used		
1	0	0	0	0	0	0	0	OK			
1	0	0	0	1	0	0	1	Below low limit Lo	Advisory alarm		
1	0	0	0	1	0	1	1	Above high limit Hi	Advisory alarm		
1	0	0	0	1	1	0	1	Lo-Lo	Critical alarm		
1	0	0	0	1	1	1	1	Hi-Hi	Critical alarm		
Ex	amp	le S	P = 4	43.7	7 % a	nd 5	0%				
Flo	oat			Н	lex			Status			
43	.7			4	2 2E	CC (CD	80			
50	.0			4	2 48	00 (00	80			

(FF) Foundation Fieldbus function blocks
Function blocks are sets of data sorted by
function and use. They can be connected to
each other to solve a control process, or to a
controlling DCS. To get a good introduction and
understanding of FF look at www.fieldbus.org
and download the "Technical Overview" from the
About FF pages.

(TB) Transducer Block

The TB contains unit specific data. Most of the parameters are the same as parameters found on the display. The data and the order of data varies between different products. The AO-block setpoint (SP) and process value (PV) parameters are transceived to the TB through a channel. The TB has to be in AUTO for the AO-block to be in AUTO.

The positioner has to be in menu-auto mode and in service to be controlled from the fieldbus. If the positioner is placed in menu-manual mode then the transducer block will be forced to (LO) local override. In this way a person in the field will be able to control the positioner from the keypad, without collision with a control loop.

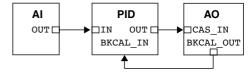

(RB) Resource Block

The RB is a set of parameters that looks the same for all units and products. The values of the RB define unit information that concerns the Fieldbus Protocol such as MANUFAC_ID which informs the unique manufacturer id. For Flowserve it is 0x464C53. The RB has to be in AUTO for the AO-block to be in AUTO.

(AO) Analogue Output Block

The AO follows Fieldbus Foundation's standard on content and action. It is used for transferring (SP) setpoints from the bus to the positioner.

CAS_IN (cascade input) and RCAS_IN (remote cascade input) are selected as inputs to the AO block depending on the MODE_BLK parameter. The selected input will be relayed to the SP parameter of the AO block. BKCAL_OUT (back calculated output) is a calculated output that


can be sent back to a controlling object so that control bumps can be avoided. Usually the BKCAL_OUT is set to be the (PV) process value of the AO-block, i.e. the actual measured position of the valve. OUT is the primary calculated output of the AO block. During a limited action (ramping) of the AO block the RCAS_OUT parameter will supply the final setpoint and the OUT parameter will be the limited output. The transducer block is connected through a channel to the AO block. Through this channel the OUT value and SP are transceived.

In order to set the AO block to AUTO, the TB and the RB have to be in AUTO. Further the AO block has to be scheduled. Using National Instruments Configurator; scheduling can be done by adding the unit to a project and then click on the "upload to device" icon.

To write a setpoint value by hand, add Man to MODE->Permitted parameter, and then choose MODE->Target to Man. Make sure that the unit is scheduled.

Example

A typical FF block loop control might look like the following: Where the positioner is represented by the AO-block.

The contents of the menu are shown on the next page. The various menu texts are described below.

Auto-Cal Auto-tuning and calibration of end positions

Start tune Starts the tuning. Questions/commands are displayed during

calibration. Select the type of movement, function, etc. with

and confirm with OK as shown in the chart on the next page.

Lose prev value? OK? A warning that the value set previously will be lost (not during the

first auto-tuning).

Direction? Air-to-open. Select for direct function.

Direction? Air-to-close. Select for reverse function.

In service? Press OK Calibration finished. Press OK to start positioner functioning.

(If ESC is pressed, the positioner assumes the "Out of service"

position but the calibration is retained).

TravelCal Calibration of end positions
Start cal Start end position calibration.

Lose prev value? OK? A warning that the previously set value will be lost. Confirm with

OK. The calibration sequence starts.

In service? Press OK Calibration finished. Press OK to start positioner functioning.

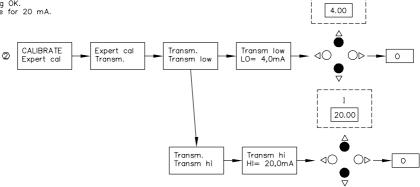
(If ESC is pressed, the positioner assumes the "Out of

service"position but the calibration is retained).

Perform Setting gain
Normal 100% gain

Perform G, F, E, D, C, B, A Possibility to select a lower gain in steps.

Default setting is D.


Note. Original P. I. D. will always be shown in display

I

Feedback option (cont.) Calibration of the 4-20 mA transmitter

Go to menu shown in diagram. Connect mA meter I and check reading. Adjust output signal using Up or Down key until meter I reads 4.00 mA. Finish by pressing OK. Repeat the above for 20 mA.

Expert Calibration

When entering "ExpertCal" mode - walk through the list of parameters described below. Set values where applicable. Confirm by pressing OK.

Set point LO: Use the calibrator set to 4 mA (or set another value on the display). Press OK.

Set point HI: Use a calibrator of 20 mA (or set another value on the display). Press OK.

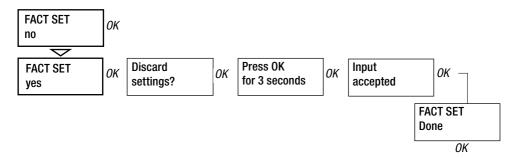
Pressure LO: Use a supply of 1.4 bar (20 psi) (or set another value on the display). Press OK. Pressure read out only possible on D20 with built in pressure sensor.

Pressure HI: Use a supply of 8 bar (115 psi) (or set another value on the display). Press OK. Pressure read out only possible on D20 with built in pressure sensor.

Transmitter: Connect 10 - 28 VDC. Connect an external mA meter to the loop. Read low value on mA meter and adjust with up/down key. Press OK to set low value.

Repeat procedure to set High value.

Also see video on www.pmv.nu


Pot: Potentiometer setting, see section 5. Also see video on www.pmv.nu

Full reset: Resets all set values and enters Factory mode. To reset the values only, use FACT SET in main menu, see below.

The menu contents are shown in the chart below.

The default values that were set on delivery can be reset using the Fact Set menu. Values from calibration and from other settings will then be lost.

The menu contents are shown in the figures on the right and the texts are described below:

Current values can be read using the Read Menu and some values can be reset.

Pos Shows current position READ Set&pos Set point and position pos Set&dev Set point and deviation Pos graph Shows position graph Statistics Temp Shows current temperature n cycles READ Statistics set&pos Shows number of cycles. n cycles 1 cycle = [move of valve +change direction+move Statistics opposite direction] regardless acc travel of size of each move/stroke. Acc travel Travel = [accumulated % valve Statistics READ has moved/100]. mean dev set&dev Example: move 60% up + move Statistics 40% down =>Acc travel = 1 m. abs dev READ mean dev Shows accumulated Pos Graph deviation in % Statistics runtime m.abs dev Shows accumulated absolute deviation in % READ Statistics temp # of resets # of resets Shows number of resets Statistics runtime Shows accumulated runtime READ since last reset extr. temp **Statistics** Shows extreme min and max Extr temp Statistics temperature histogram READ Histogram Shows position and time for Alarms Statistics position value Reset stat Alarms Displays tripped alarms

The Man/Auto menu is used to change between manual and automatic modes.

The menu contents are shown in the figures on the right and the various texts are described below:

AUT. OK = MAN

Positioner in automatic mode

MAN, OK = AUT

Positioner in manual mode

In the MAN mode, the value of POS can be changed using . The push-buttons increase/decrease the value in steps. The value can also be changed in the same way as for the other parameter values, as described on page 28

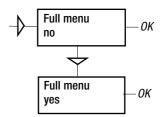
Other functions

C+ can be fully opened by pressing \triangle and then immediately OK simultaneously.

C- can be fully opened by pressing \bigvee and OK simultaneously.

C+ and C- can be fully opened for blowing clean by pressing \longrightarrow and OK simultaneously.

When changing between MAN and AUT mode, the OK button must be pressed for 3 seconds.



The Shift Menu is used to choose between the basic menu and the full menu.

The menu contents are shown in the figures on the right and the various texts are described below:

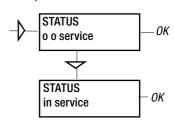
No Full menu selected.

Yes Basic menu selected.

The Menu can be locked with a passcode, see Setup menu.

Full Menu

The Status Menu is used to select whether or not the positioner is in service.


The menu contents are shown in the figures on the right and the various texts are described below:

o o service Not in service. Flashing

indicator in upper lefthand corner of display.

in service Positioner in service.

Critical parameters cannot be changed.

When changing between In service and Out of service, the OK button must be pressed for 3 seconds.

The Setup Menu is used for various settings.

The menu contents are shown in the chart on the next page and the various texts are described below:

Actuator	Type of actuator	Size of actuator	Time out
Rotating	Rotating actuator.	Small	10 s
Linear	Linear actuator.	Medium	25 s
		Large	60 s
		Extra large	180 s

Lever Only for linear actuator.

Stroke length to achieve correct display. Input only needed in case display value Lever stroke

is off

Calibration of positions to achieve correct display. Level cal

Direction

Direct function (signal increase opens), Indicator/spindle rotates counter-clock Direct

wise.

Reverse function. Reverse

Character Curves that show position as a function of input signal.

See diagram.

Linear

Equal %

Quick open

Sar root

Custom Create own curve.

Cust chr

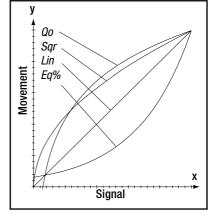
Specify number of points # of point

(3, 5, 9, 17, or 33)

Cust curve Enter values on X and Y axes.

Curr range (Use this function to split range)

0% = 4.0 mA


100%=20.0 mA Possibility of selecting which input

signal values will correspond to

0% and 100% movement respectively.

Examples of settings:

4 mA = 0%, 12 mA = 100%, 12 mA = 0%, 20 mA = 100%.

TRVL range Settina end positions 0% = 0.0%Select Out of Service. Set percentage value for desired end position (e.g. 3%). Set 0% Select In Service. Connect calibrator. Move forward to desired end position (0%) and press OK. 100%=100.0% Select Out of Service. Set percentage value for desired end position (e.g. 97%). Set 100% Select In Service. Connect calibrator, Move forward to desired end position (100%) and press OK. Tryl ctrl Behavior at set end position Set low Choose between Free (positioner will control until a mechanical top is reached). Limit (stop at set end position), and Cut off (Default value. Go directly to a mechanical stop at a redefined setpoint). Set high Similar to Set low. **Values** Select position for Cut off and Limit at the respective end positions. Passcode Setting passcode for

access to the menu

Numbers between 0000 and 9999 can be used as passcodes. 0 = no passcode required.

Appearance

Language

Units

Def. Display

On display

Select menu language.

Select units.

Select value(s) to be

displayed during service.
The display reverts to this value 10 minutes after any

change is made.

Start menu Start in Basic menu or

Full menu.

Orient Orientation of text on display.

Par mode Display of control parameters

such as P, I, D or K, Ti, Td.

Devicedata

HW rew SW rew

General parameters.

Capability

HART Menu with HART parameters.

Only amendable with HART communicator. It is possible

to read from display.

Profibus PA

Status Indicates present status

Device ID Serial number

Address 1-126
Tag Allotted ID
Descriptor ID description
Date SW release date
Failsafe Value = preset pos

Time = Set time +10sec= time before movement Valve act = failsafe (preset pos) or last value

(present pos)
Alarm out= On/Off

Foundation Fieldbus

Device ID Serial number

Nod address Address on the bus provided

by the DCS system

TAG-PD TAG Name provided by the

DCS system

Descriptor D20 positioner
Date SW release date
Sim iumper Simulate iumper, FF

simulation functionality

activated = ON

The menu contents are shown in the chart on the next page and the various texts are described below:

Close time Minimum time from fully open to closed.

Open time Minimum time from closed to fully open.

Deadband Setting deadband. Min. 0.1%.

Expert Advanced settings.

Control See explanations below.

Togglestep Test tool for checking functions. Overlays a square wave on the set value.

Self test Internal test of processor

Undo You can read last 20 changes.

P,I,D and K,Ti,Td parameters

If one of the gains is changed, the corresponding value in the other gain set is changed accordingly.

See diagram below!

The menu contents are shown in the chart on the next page and the various texts are described below:

Deviation Alarm generated when deviation occurs

On/Off Alarm on/off.

Distance Allowed distance before alarm is generated.

Time Total deviation time before alarm is generated.

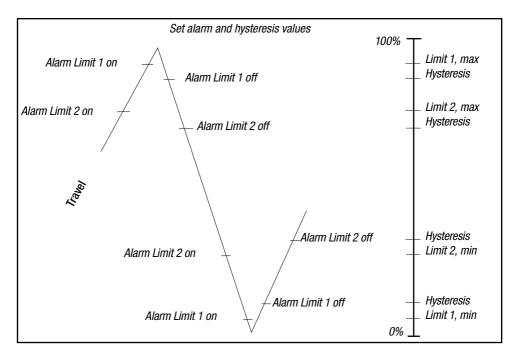
Alarm out Select ON/OFF offers output on terminals.

Valve act Behavior of valve when alarm is generated.

Limit 1 Alarm above/below a certain level.

On/Off Alarm on/off.

Minipos Setting of desired min. position.


Maxpos Setting of desired max. position.

Hysteresis Desired hysteresis.

Alarm on Select ON/OFF offers output on terminals.

Valve act Behavior of valve when alarm is generated.

Limit 2 See Limit 1.

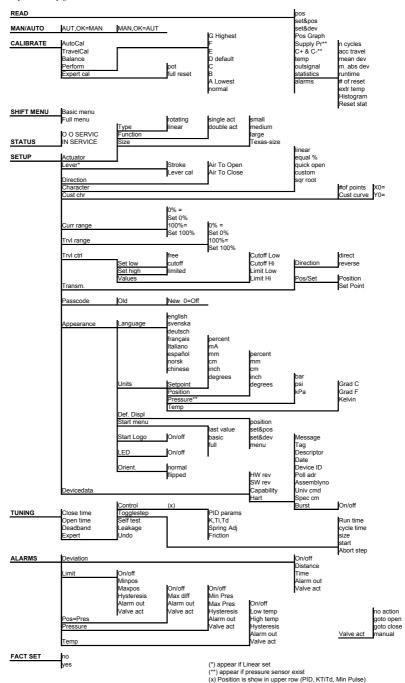
Temp Alarm based on temperature
On/Off Temperature alarm on/off.
Low temp Temperature setting.
Temperature setting.

High temp Temperature setting. Hysteresis Allowed hysteresis.

Alarm out Select ON/OFF offers output on terminals. Valve act Behavior of valve when alarm is generated.

Valve act

No action Alarm generated only. Operations not affected.


Goto open Valve moves to 100%. Positioner changes to position Manual.

Goto close Valve moves to 0%. Positioner changes to position Manual.

Manual Valve stays in unchanged position. Positioner moves to position Manual.

Replacement for page xx in the D30 IOM for software version 1.2

9. Maintenance/service

When carrying out service, replacing a circuit board, etc., it may be necessary to remove and refit various parts of the positioner. This is described on the following pages.

Read the Safety Instructions on page 4 and page 5 before starting work on the positioner.

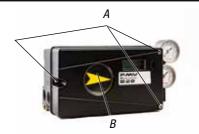
Cleanliness is essential when working with the positioner. Contamination in the air ducts will inevitably lead to operational disturbances. Do not disassemble the unit more than that described here.

DO NOT disassemble the valve block apart because its function will be impaired.

When working with the D20 positioner, the work place must be equipped with ESD protection before the work is started.

Always turn off the air and electrical supplies before starting any work.

Please see section for special conditions for safe use and spare parts on page 5!

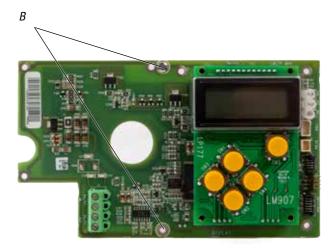

Please contact a Flowserve office for information regarding proper procedures. www.pmv.nu or infopmv@flowserve.com

Disassembling D20

Removing cover and inner cover

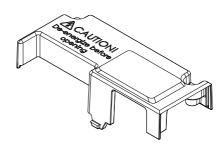
- Unscrew the screws A and remove the cover. When mounting cover see <u>page 5</u>. Torque the screws to 0.9 Nm.
- · Pull off the arrow pointer, B.
- Unscrew the screws C and remove the inner cover. In reinstalling the inner cover, torque the screws to 0.4 Nm.
- . If equipped with switches remove the cam stack

Note: Removing inner cover will void warranty.



Circuit boards (PCB)

Disconnect or switch off the electric power supply before starting any work.


- · Lift off the display PCB..
- · Release the cable connections.
- Unscrew the two screws B and lift up the circuit board.
- In reinstalling the circuit board, torque the screws to 0,4 Nm.

Limit Switches

Loosen two x screws holding the plastic cover and remove the screws. Pull out the plastic cover. Break away the plastic protection located on the main plastic cover to ensure there is an opening for the switches/cams. In reinstalling the plastic cover, torque the screws to 0,4 Nm.

When installing the switch card, make sure it is placed correctly. Secure the PC Board with the two screws holding the plastic cover. Make sure the holes are centred before tightening the screws. Torque the screws to 0,4 Nm.

Note! When installing the cam assembly for mechanical switches, retract both switch arms first.

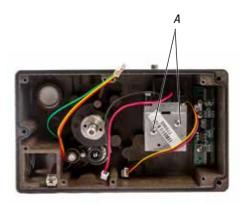
Install the cam assembly and tighten the screws loosely to obtain enough friction to lock the cams.

Adjust the lower cam first, then the upper cam.

Valve block

Turn off the air and electric power supply before starting any work.

 Remove the three screws A and lift out the valve block


Do not disassemble the valve block

 When installing the valve block — torque the two screws to 0,4 Nm and seal with Loctite® 222.

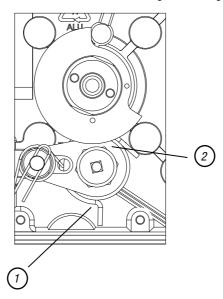
Pressure sensors (option)

Two pressure sensors are available as an option. They indicate pressure for supply and C+ air, and can be used by ValveSightTM to enable advanced valve diagnostics.

The sensors are mounted on a circuit board which mounts next to the air relay on the floor of the housing at B using three screws. Torque the screws to 0,4 Nm.

Pressure sensor PCB - top view

Pressure sensor PCB - bottom view


Potentiometer

90° (270°) spring loaded potentiometer
The spring-loaded potentiometer can be removed from the gearwheel for calibration or replacement.

If the potentiometer is replaced or the setting is changed, it must be calibrated.

Select the menu Calibrate - Expert - Cal pot.
 The display shows Set gear.

- Turn the spindle shaft clockwise to end position and press OK. Either turn manually or use the up/down arrows (with supply air) to stroke the positioner to turn the shaft clockwise.
- Move spring (1) aside and disengage cogwheels. Turn potentiometer according to display until OK is shown. Press OK. See drawing below.
- Move back spring (1) and secure potentiometer (2) calibration. See drawing below. Spring (1) must allow a small play but not so big that the cogs can disengage.

Potentiometer and cogwheel for 90° rotation

10. Trouble shooting

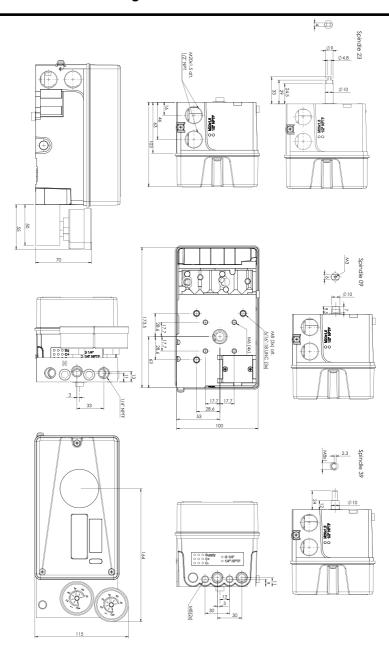
Symptom	Action
Input signal change to positioner does not affect actuator position.	 Check air supply pressure, air cleanliness, and connection between positioner and actuator. Out of service, in manual mode. Check input signal to positioner. Check mounting and connections of positioner and actuator.
Change in input signal to positioner makes actuator move to its end position.	Check input signal. Check mounting and connections of positioner and actuator.
Inaccurate control.	 Perform Auto-calibration and check for any leaks. Try high and low gain settings. Uneven air supply pressure. Uneven input signal. Wrong size of actuator being used. High friction in actuator/valve package. Excess play in actuator/valve package. Excess play in mounting of positioner on actuator. Dirty/humid supply air.
Slow movements, unstable regulation.	Implement auto-tuning. Increase the deadband (Tuning menu). Adjust Performance (Calibrate menu).

11. Technical data

Rotation angle	min 25° max 100°
Stroke	From 5 mm (0.2")
Input signal	4-20 mA DC
Air supply	1.4-6 barg (20-85 psi) DIN/ISO 8573-1 3.2.3 Free from oil, water and moisture.
Air delivery	7 Nm3/h @ 6 bar / 4.12 SCFM @ 87 psi
Air consumption	0.120 Nm3/h @ 6 bar / 0.071 SCFM @ 87 psi
Air connections	1/4" NPT
Cable entry	2x M20x1.5 or ½" NPT
Electrical connections	Screw terminals 2.5 mm2 /AWG14
Linearity	<0.4%
Repeatability	<0.5%
Hysteresis	<0.3%
Dead band	0.1-10% adjustable
Display	Graphic, view area 15 x 41 mm (0.6 x 1.6")
UI	5 push buttons /single push button
CE directives	93/68EEC, 2014/30/EU, 92 /31/EEC
Voltage drop, w/o HART	8 V
Voltage drop, with HART	9.4 V
Enclosure	IP66
Material	Die-cast Aluminum
Surface treatment	Powder coating
Temperature range	-20°C to 85°C (-4°F to 185°F)
Weight	1.8 kg (4 lbs)
Mounting position	Any
Communication protocols	Hart, Profibus PA, Foundation Fieldbus

Mechanical switches	
Туре	SPDT
Size	V3
Rating	3 A/250 VAC / 1A@30VDC
Temperature range	-40°C to 80°C (-40°F to 180°F)

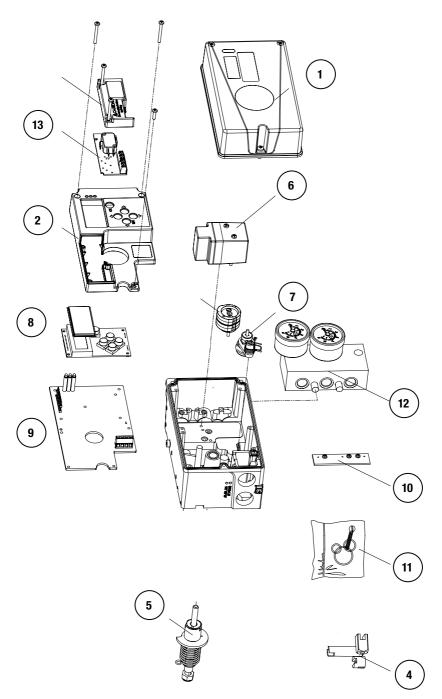
NAMUR sensors	
(NJ2-V3-N)	
Туре	Proximity DIN EN 60947-5-6:2000
Load current	1 mA ≤ <i>I</i> ≤ 3 mA
Voltage range	8,2 VDC
Hysteresis	0.2%
Temperature range	-25°C to 85°C (-13°F to 185°F)


Proximity switches	
Туре	SPDT
Rating	0.4 A @ 24 VDC, Max 10 W
Operating time	Max 1.0 ms
Max voltage	200 VDC
Contact resistance	0.2 Ω
Temperature range	-40°C to 80°C (-40°F to 180°F)

Slot NAMUR switches	
(SJ2-SN, SJ2-N)	
Туре	Proximity DIN EN 60947-5-6:2000
Load current	1 mA ≤ <i>I</i> ≤ 3 mA
Voltage	8,2 VDC
Hysteresis	0.2%
Temperature range	-25°C to 85°C (-13°F to 185°F) SJ2-N -40°C to 85°C (-40°F to 185°F) SJ2-SN

4-20 mA transmitter	
Supply	11-28 VDC
Output	4-20 mA
Resolution	0.1%
Linearity full span	+/-0.5%
Output current limit	30 mA DC
Load impedance	800 Ω @ 24 VDC

12. Dimensional Drawing



13. Spare parts

No	Part no	Description
1	D4-SP37PVA	Black cover incl. screws and flat indicator
1	D4-SP37FWA	White cover incl. screws and flat indicator
2	D4-SP40	Internal cover incl. screws
3	D4-SP1516	External covers SST, 2, incl screws
4	3-SXX	Spindle adaptor (XX = 01, 02, 06, 26, 30, 36)
5	D4-SP05-09	S09 shaft compl. incl. gear wheel, friction clutch, spring
5	D4-SP05-21	S21 shaft compl. incl. gear wheel, friction clutch, spring
5	D4-SP05-23	S23 shaft compl. incl. gear wheel, friction clutch, spring
5	D4-SP05-39	S39 shaft compl. incl. gear wheel, friction clutch, spring
6	D2-SP50 STD	Air relay complete, incl. cable, seal, screws
7	D4-SP08	Potentiometer compl. incl. spring, bracket, cable
8	3-SP37HR	PCB LCD, 5 buttons, assembly
8	AV-SP080	PCB LCD only, assembly
9	D4-SP80-3S	PCB mother board 4-20 mA / HART (For D22 version)
9	D4-SP80-1S	Single button PCB mother board 4-20 mA / HART
9	D4-SP80-PS	PCB mother board Profibus PA
9	D4-SP80-FS	PCB mother board Fieldbus
10	D4-SP84-2	D20 pressure sensor assembly complete (Optional)
11	D4-SPGB	Bag with screws, O-rings, seals, pair of sintered brass silencers, cable gland
12	D4-SP940N2	Gauge block G, complete incl. screws, seals, 2 gauges / SST, Brass
13	D4-SP081 S	Limit switches Mechanical SPDT compl.
13	D4-SP081 N	Limit switches Namur V3 P&F NJ2-V3-N compl.
13	D4-SP081 P	Limit switches Proximity SPDT compl.
13	D4-SP081 5	Limit switches Namur slotted P&F SJ2-SN compl.
13	D4-SP081 6	Limit switches Namur slotted P&F SJ2-N compl.

Note: Replacement of certified spare parts require proper qualification and knowledge of applicable standards.

14. Applied Standards

EN 61000-6-2 C1 2005-09-26

EN 61000-6-3 A2 2007-02-26

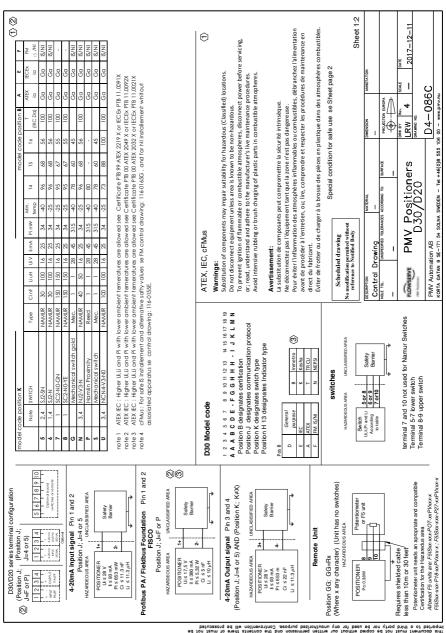
EN 61000-6-4 A1 2007-02-26

EN 60204-1 A1 2007-05-21

IEC 61010-1 2010

EN IEC 60079-0:2018 2012+A11:2013

EN 60079-11 2012


EN 60079-14 2014

EN 60079-26 2015

EN 60079-27 2010

IEC 61158-2 2014

15. Control Drawing

FM only

HAZARDOUS AREA:

Class I,II Division 1 Group A,B,C,D T4 Class I Zone 0,1 AEx ia IIC T4 Class I Division 2 Group A,B,C,D T4 Class I Zone 2 AEx n IIC T4 Class III Div 1&2 T4

INSTALLATION NOTES:

Control equipment connected to the associated apparatus shall not use or generate more than 250Vrms or Vdc. Associated apparatus manufacturer's installations drawing shall be followed when installing this equipment. Run shielded interconnection cable with shield connected to FM approved associated apparatus ground.

Allows the interconnection of two intrinsically safe devices FM approved with entity parameters not specifically The intrinsically safety entity concept:

Joor Vocor Vt ≤ Vmax, loor lscor It ≤ Imax, Po ≤ Pi, Ca or Co ≥ Ci + Ccable, Laor Lo ≥ Li + Lcable examined in combination as a system when:

The non-incendive field wiring concept:

Allows the interconnection of non-incendive field wiring apparatus with associated non-incendive field apparatus, Jo or Voc or V1 < Vmax, lo or lsc or It < Imax, Po < Pi, Ca or Co > Ci + Ccable, La or Lo > Li + Lcable. using any of the wiring methods permitted for non-hazardous (unclassified) locations when:

The non-incendive:

Use IS values as general (Vmax = Ui ; Imax = II) except for folowing Namur Switch (Pos K=5,6,N or U)

Vmax = 25V. Imax is not regired for this current controlling circut

Vmax = 30V, Imax = 500mA 4-20mA input signal (Pin 1 and 2) Vmax= 30V, Imax =40mA Proximity Switch (Pos K=P)

Vmax= 30V, Imax is not regired for this current controling circut 4-20mA Output signal Pin 3 and 4

or division 1 installations:

The configurations of associated apparatus shall be FM approved under entity concept. installation of intrinsically safe systems for hazardous (classified) locations" and the Division1 installations should be in accordance with ASI/ISA RP12.06.01 national electrical code (ANSI/NFPA 70).

or division 2 installations:

Using non-incendive field wiring concept, the associated apparatus shall be FM approved under entity concept or non-incendive field wiring concept.

non-incendive field wing concept. If the unit is installed in accordance with the national electrical code (ANSI/NFPA 70) for division 2 wiring methods excluding non-incendive field wiring. The associated apparatus is not required to be FM approved under entity concept or

LRW LRW LRV LRV 2020-03-10 2019-04-29 2019-09-18 2019-11-19 All cFMus only information added, fench translation warning added. Cable cland restriction added. ATEC and IEC FISCO related information added of refrences to "dust" removed Special conditions for ATEX IEC added G Value change rev 3 revoked cFMus: FISCO added; cFMus: 4-20 mA Civalue lowered :General; added certification table

modification permited without reference to Notified Body Scheduled drawing

General requirements for units with 4 conduit openings and NPT threading. Model code position D=N and Position E= 4 or F

4

(Including IEC related Certificates)

Special Conditions for Safe Use

The enclosure of PMV D30(D20) Intrinsically safe version is made of aluminium and any impact or friction caused by external objects shall

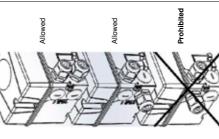
be avoided in the application.

Cable glands may not be installed on the same level. the unused openings must be plugged by supplyed A maximum of two cable glands may be used, Cable glands must be used when installing. blanks or other suitable blanks. (se ilustration)

The cable connection of the Remote Unit with the D30(D20) unit shall

be type A or B in accordance with EN 60079-25. The cable must be

temperature rating for the ambient temperature range at the site. adequately mechanically protected in all instances and have a


The surface area of the plastic parts on the cover exceeds the limits

The intrinsic safe circuits D30(D20) is insulated from earth and

complies with the dielectric strength test of 500 V ac.

specified in EN 60079-0 for II 1G (EPL Ga) for gas group IIC and intensive rubbing or brush charging should be avoided when used

in an IIC explosive atmosphere.

DESCRIPTION		MATERIAL		DIMENSION		ANNOTATION	
Control Drawing	awing	1		1			
ноле тол.	UNSPECIFIED TOLERANCES	ACCORDING TO:	SURFACE	Р Во <u>је</u> стіо	PROJECTION EUROPA		
-	1			ф	Δ		
				DRW BY	Rev.	SCALE	DATE
FLOWSERVE	PM<	sition	ers	LRW	4	ı	2017-12-11
manner (D30/D20	/D20		DRAWING NO.			

Sheet 2:2

KORTA GATAN 9 SE-171 54 SOLNA SWEDEN - Tel: +46(0)8 555 106 00 - www.pmv.nu PMV Automation AB

D4-086C

FCD PNENIM0020-06-A5 - 07/24

To find your local Flowserve representative:

To find your local Flowserve representative please use the Sales Locator

System found at www.flowserve.com

Flowserve Corporation has established industry leadership in the design and manufacture of its products. When properly selected, this Flowserve product is designed to perform its intended function safely during its useful life. However, the purchaser or user of Flowserve products should be aware that Flowserve products might be used in numerous applications under a wide variety of industrial service conditions. Although Flowserve can provide general guidelines, it cannot provide specific data and warnings for all possible applications. The purchaser/ user must therefore assume the ultimate responsibility for the proper sizing and selection, installation, operation, and maintenance of Flowserve products. The purchaser/user should read and understand the user instructions included with the product, and train its employees and contractors in the safe use of Flowserve products in connection with the specific application.

While the information and specifications contained in this literature are believed to be accurate, they are supplied for informative purposes only and should not be considered certified or as a guarantee of satisfactory results by reliance thereon. Nothing contained herein is to be construed as a warranty or guarantee, express or implied, regarding any matter with respect to this product. Because Flowserve is continually improving and upgrading its product design, the specifications, dimensions and information contained herein are subject to change without notice. Should any question arise concerning these provisions, the purchaser/user should contact Flowserve Corporation at any one of its worldwide operations or offices.

For more information about Flowserve Corporation, contact www.flowserve.com or call USA 1-800-225-6989.

O July 2024, Flowserve Corporation, Irving, Texas

PMV Automation AB

Korta Gatan 9 SE-171 54 SOLNA SWEDEN

Phone: +46 (0)8-555 106 00 E-mail: infopmv@flowserve.com

PMV USA

1511 Jefferson St. East Sulphur Springs, TX 75482 Phone: +1 281 671 9209 Fax: +1 281 671 9268 E-mail: pmysales@flowserye.com

Flowserve Flow Control

Burrell Road, Haywards Heath West Sussex RH16 1TL Phone: +44(0)1444 314400

Flowserve Flow Control Benelux Rechtzaad 17

4703 RC Roosendaal THE NETHERLANDS Phone: +31 (0) 30 6771946 Fax: +27 (0) 30 6772471

Flowserve Flow Control GmbH

Rudolf-Plank Strasse 2 D-76275 Ettlingen GERMANY

Phone: +49 (0) 7243 103 0 Fax: +49 (0) 7243 103 222

Flowserve Corporation

No. 35, Baiyu Road Suzhou Industrial Park Suzhou 215021, Jiangsu Province,

Phone: +86-512-6288-1688 Fax: +86-512-6288-8737

Flowserve (China)

585, Hanwei Plaza 7 Guanghau Road Beijing, China 100004 Phone: +86 10 6561 1900

Flowserve Pte Ltd

No. 12 Tuas Avenue 20 Singapore 638824 Phone: +65 6879 8900 Fax: +65 6862 4940

Flowserve do Brasil Ltda

Rua Tocantins, 128 - Bairro Nova Gerti São Caetano do Sul, São Paulo 09580-130 Brazil Phone: +5511 4231 6300 Fax: +5511 4231 6329 - 423